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Physical or psychological stress can cause an immunologic imbalance that disturbs
the central nervous system followed by neuroinflammation. The association between
inflammation and depression has been widely studied in recent years, though the
molecular mechanism is still largely unknown. Thus, targeting the signaling pathways
that link stress to neuroinflammation might be a useful strategy against depression. The
current study investigated the protective effect of melatonin against lipopolysaccharide
(LPS)-induced neuroinflammation and depression. Our results showed that LPS
treatment significantly induced depressive-like behavior in mice. Moreover, LPS-
treatment enhanced oxidative stress, pro-inflammatory cytokines including TNFα, IL-6,
and IL-1β, NF-κB phosphorylation, and glial cell activation markers including GFAP
and Iba-1 in the brain of mice. Melatonin treatment significantly abolished the effect
of LPS, as indicated by improved depressive-like behaviors, reduced cytokines level,
reduced oxidative stress, and normalized LPS-altered Sirt1, Nrf2, and HO-1 expression.
However, the melatonin protective effects were reduced after luzindole administration.
Collectively, it is concluded that melatonin receptor-dependently protects against LPS-
induced depressive-like behaviors via counteracting LPS-induced neuroinflammation.
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Abbreviations: AKT, Serine-threonine protein kinase; ANOVA, Analysis of variance; BDNF, Brain-derived neurotrophic
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INTRODUCTION

Major depressive disorder (MDD) is a major health concern
associated with brain and immune system abnormalities. It
plays a significant role in the global burden of diseases by
affecting people in all communities across the world. According
to recent epidemiological surveys, it has been estimated that by
2020, MDD will be the 2nd leading diseases worldwide (Kessler
et al., 2003; Kessler and Bromet, 2013). The central nervous
system (CNS) responds to the pathogen and several cellulars
stress processes through neuro-inflammation, which can induce
molecular dysregulation and can be a critical control point for
the development of depression (Singhal et al., 2014; Tohidpour
et al., 2017). It has been reported that failure in adaptation to
psychological or physical stress can lead to depression which
is mediated by an inflammatory response and cytokines (Wu
et al., 2012; Jeon and Kim, 2016). Several lines of evidence from
both clinical and experimental data have strongly proposed that
internal and external stress significantly affects the expression
of depressive symptoms and their persistence is associated with
immunological abnormalities (Wu et al., 2012; Hsieh and Yang,
2013; Jeon and Kim, 2016). An elevated level of microglia
activation has been reported in individuals with depression who
commit suicide, suggesting that neuroinflammation contributes
a significant role in the pathogenesis of depression (Brites
and Fernandes, 2015). The immune system could also affect
the CNS through cytokines, which not merely participate in
cell-to-cell communication but also affect the regulatory and
processing mechanism of neurochemicals and neuroendocrine
that are the key regulator of physiological and behavioral
alterations (Jeon and Kim, 2016). Activated peripheral immune
system increase cytokines production and flow to CNS, where
they induce the activation of astrocytes and microglia, which
in turn elevates cytokines production (Muller and Ackenheil,
1998; Song and Wang, 2011). Moreover, the crosstalk between
microglia and astrocytes under stress condition involve in
neuroinflammation that leads to dysfunction in the neurotrophic
system, which may contribute to the pathogenesis of MDD
(Song and Wang, 2011).

Dysregulation in the redox-sensitive signalings has been
shown to play a major role in an immune imbalance that leads to
depression (Martin-de-Saavedra et al., 2013). Enhanced reactive
oxygen species (ROS) overwhelms the antioxidant defense system
that leads to oxidative stress, which in turn participates in
the pathogenesis of numerous diseases including neurological
abnormalities (Alfadda and Sallam, 2012; Salim, 2014; Song et al.,
2018). Accumulative results support the increased expression
of pro-inflammatory cytokines that occurred via the activation
of transcription factor NF-κB under stress condition (Munhoz
et al., 2008; Kassan et al., 2013; Jeon and Kim, 2016), as
demonstrated by NF-κB activation by inflammatory cytokines
and lipopolysaccharide (LPS; Rushworth et al., 2005; Kassan et al.,
2013). Apart from its pro-inflammatory function, NF-κB is also
involved in the oxidative/anti-oxidative stress regulation, which
in turn affect cytokine production (Kratsovnik et al., 2005; Kawai
and Akira, 2007; Lugrin et al., 2014; Djordjevic et al., 2015).
Interestingly, NF-κB regulates Nrf2 transcription and activity,

which not only elevates antioxidant capacity but also induces
the expression of a neuroprotective protein, such as brain-
derived neurotrophic factors (BDNF), anti-inflammatory protein
Hemoxygenase-1 (HO-1), and anti-inflammatory cytokines
(Sekio and Seki, 2015; Cuadrado et al., 2018), indicating the
intricate interplay between neuroinflammation and oxidative
stress systems. Further, Sirt1 regulation has been also currently
reported in mood disorders both in the animal models as well as
humans (Kishi et al., 2010; Iacono et al., 2015; Luo and Zhang,
2016). Numerous studies have reported that Sirt1 can reduce
inflammation as well as oxidative stress (Alcendor et al., 2007;
Salminen et al., 2008; Iacono et al., 2015), therefore, a stress
inducer like LPS may suppress Sirt1 expression (Hurley et al.,
2014; Ge et al., 2015; Ali H. et al., 2015; Shah et al., 2017).

Numerous studies have reported the beneficial effects of
exogenous melatonin on the brain, which might include the
activation of melatonin membrane receptors (MMRs). Luzindole
(N-acetyl-2-benzyltryptamine) is a well-known high selective
MMR antagonist and is widely employed to study the action
of melatonin on the signaling pathways and the associated
neuroendocrine and functional responses (Ortiz-López et al.,
2016; Estaras et al., 2019).

Melatonin (N-acetyl-5-methoxytryptamine) is the main
neurohormone of pineal glands. It regulates the major
physiological process via its receptors (MT1, MT2), which
are specific G-protein coupled receptors to regulate downstream
molecules phospholipase C (PLC), guanylyl cyclase (GC),
adenylyl cyclase (AC), cyclic guanosine monophosphate (cGMP),
and as well as calcium and potassium channels (Negi et al., 2011;
Guijarro-Munoz et al., 2014; Taniguti et al., 2018). MT1 and MT2
receptors are expressed in the CNS including the hippocampus,
suprachiasmatic nucleus (SCN), and tegmental areas together
as well as separately (Hirsch-Rodriguez et al., 2007). Melatonin
is a key immunomodulatory and neuroprotective via its
antioxidative and anti-inflammatory mechanisms, presumably
by encountering the free radicals (Hirsch-Rodriguez et al., 2007;
Guijarro-Munoz et al., 2014; Cecon et al., 2018; Hardeland,
2018). Previous studies reported that the free radical scavenging
actions of melatonin are receptor-independent (Rehman et al.,
2019; Zhao D. et al., 2019; Maher et al., 2020; Zhi S. M. et al.,
2020), while it also regulates antioxidant enzymes including
superoxide dismutase and catalase through receptor-dependent
mechanisms (Reiter et al., 2003; Rodriguez et al., 2004; Reiter
et al., 2016; Zhao et al., 2018). Herein we tried to explore the
molecular mechanisms of melatonin involved in stress-induced
neuroinflammation, an essential strategy against MDD.

MATERIALS AND METHODS

Animal and Drug Treatment
Adult C57BL/6J male mice weighing 25–30 g (7–8 weeks) were
purchased from Guangdong medical laboratory animal center,
China. The experimental animals were housed at Laboratory
Animal Research Center, Peking University Shenzhen Graduate
School, under 12 h light/12 h dark cycle at 18–22◦C, and had
free access to diet and tap water throughout the study. The
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experimental procedures were set in such a way to minimize
mice suffering. All experimental procedures were carried out
according to the protocols approved by the Institutional Animal
Care and Use Committee of Peking University Shenzhen
Graduate School. The experimental animals were divided into
seven groups (each group n = 6): normal saline-treated, LPS
(1 mg/kg/day) treated, LPS +Melatonin (10 mg/kg/day) treated,
LPS + Fluoxetine (10 mg/kg/day), Melatonin (10 mg/kg/day)
treated, LPS + Melatonin + luzindole (5 mg/kg/day) treated,
and LPS + luzindole treated. Drugs (Melatonin Fluoxetine, and
luzindole) were treated intraperitoneally (12 pm to 2 pm) 1 h
before LPS treatment daily for 5 days. Both drugs melatonin and
luzinolde were dissolved in 5% DMSO and were administrated
according to the previously described protocol (Moezi et al., 2011;
Zieliñska et al., 2016; Wang et al., 2017). The drug treatment
schedule has been shown in Figure 1A. After 24 h of last
LPS injection, mice were sacrificed. Serum and brain tissues
were collected and stored at freezing temperature (−80◦C) until
further analysis.

Open Field Test
Open field test (OFT) was performed according to the previously
developed protocols (Zhao X. et al., 2019). Briefly, mice were
adapted to the experimental room for 1 h and were placed in
the chamber of 45 × 45 × 30 cm. A total of 15 min video
was recorded to observed the mice locomotor activity. The
total distance covered by mice was measured, analyzed, and
expressed in meters.

Sucrose Preference Test
A sucrose preference test (SPT) was performed (Couch et al.,
2016) while using a two-bottle free-choice paradigm. Mice were
habituated with a 1% sucrose solution for 3 days and finally
grouped randomly. To assess THE individual sucrose intake,
mice were deprived of water and food for 24 h on the 3 days of
drug administration. On the next day, each mouse had free access
to two bottles containing sucrose and water, respectively. The
position of water and sucrose-containing bottles were changed
after 12 h. Finally, the volume of consumed water and sucrose
solution were recorded and calculated by the following formula:

SPT =
Sucrose consumption

water and Sucrose consumption
× 100%

Forced Swimming Test
The forced swimming test (FST) was performed according to
previously developed protocols (Sekio and Seki, 2015). The
experimental animals were trained for swimming and pre-
experiment FST was performed to select healthy and normal
mice. To perform the FST, the animals were placed in a Plexiglas
cylinder (height: 70 cm, diameter: 30 cm) filled with water over
the 30 cm level at a temperature of 23 ± 1◦C. The video was
taped for 6 min and the last 5 min were blindly analyzed.
Mice were considered immobile when they remained floating
motionless in the water and just making a move to keep their
nose above the water surface. The horizontal movement of
the animals throughout the cylinder was defined as swimming

while vertical movement against the wall of the cylinder was
defined as climbing. EthoVision XT was used to record the
video and analysis.

Tail Suspension Test
Tail suspension test (TST) was performed according to the
previously described protocol (Steru et al., 1985; Zhao X. et al.,
2019). The experimental animals were suspended upside down
by tails 40 cm above the floor by adhesive tape placed 1 cm from
the tail tip. The immobility time was scored for the first 2 min
of a total 4 min video. EthoVision XT software was used for TST
video recording and analysis.

Serum ROS Level Measurement
Reactive oxygen species were analyzed by a previously developed
method (Hayashi et al., 2007; Ali et al., 2019). Briefly, hydrogen
peroxide/serum (5 µL/well) was added to 140 µL of 0.1 M sodium
acetate buffer (pH 4.8) in a 96-well microtiter plate. A mixture
(100 µL) which was prepared from reagent R1 (100 µg/ml
DEPPD in 0.1 M Sodium acetate buffer, pH 4.8) and R2 (4.37 µM
ferrous sulfate in 0.1 M sodium acetate buffer) at a ratio of
1:25 was added in each well. Then, after free incubation of
1 min, absorbance at 505 nm was measured using a plate reader
(Envision 2104, PerkinElmer).

TBARs Assay
Thiobarbituric acid reactive substance (TBARs) level was
estimated (Ali T. et al., 2015) to determine the damage to lipids
caused by ROS in various experimental groups. Briefly, 0.1 ml of
sample (Hippocampal tissue immunomodulatory), 0.1 ml FeSO4,
0.1 ml Tris–HCl, 0.6 ml distilled water, and 0.1 ml Ascorbic
Acid were incubated at 37◦C in a test tube for 15 min and then
1 ml TCA and 2 ml TBA were added. These plugged test tubes
were incubated for 15 min at 100◦C followed by centrifugation
at 3000 rpm for 10 min. The supernatant O.D. was determined at
532 nm and the following formula was applied to estimate TBARs
as nM/mg protein: TBARs (nM/mg protein) = O.D × Total
volume × Sample volume × 1.56 × 105 × mg protein/ml
(1.56× 105 = Molar Extinction Coefficient).

ELISA
The frozen hippocampal tissue was lysed with RIPA buffer
and homogenized on ice. Supernatants were collected after
centrifugation at 10,000 g for 10 min and stored at freezing
temperature for further analysis. The expression of cytokines was
quantified using enzyme-linked immunosorbent assay (ELISA)
kits according to the manufacturer’s protocols (IL-6 Cat NO:
RK00008, IL-1β Cat NO: RK00006, and TNFα Cat NO: RK00027,
ABclonal Biotechnology Co., Ltd, Wuhan, Hubei Province,
China). Briefly, after washing the wells of 96-well plate, 100 µL
standard/sample (sample serum/hippocampus tissues) was added
and incubated for 2 h at 37◦C. The plate was then washed and a
biotin-conjugated antibody (1:30) was added to each well. The
plate was incubated for 1 h at 37◦C. streptavidin-HRP was added
for 30 min at 37◦C. Finally, the reaction was stopped and the
optical density was measured accordingly.
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FIGURE 1 | Drug treatment schedule and LPS effect on body weights (A) Drugs treatment schedule. Melatonin/Fluoxetine/Luzindole was administrated (i.p) 1 h
before the LPS treatment for 5 days. (B) Relative body weights differences. (n = 6 per group). Data are expressed as mean ± SEM, andresults were analyzed using
one-way ANOVA followed by post-hoc analysis. p < 0.05 wasconsidered statistically significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

Immunofluorescence
Immunofluorescence staining was performed according to
previously reported protocols (Shah et al., 2017). Briefly,
brain tissue sections (20 µm thick) were washed with PBS
for 15 min (5 min × 3). After washing, the sections were
treated with blocking buffer (10% Goat serum in 0.3%
Triton X–100 in PBS) for 1 h at room temperature. After
blocking the tissue was treated with primary antibodies with
a dilution ratio of 1:500 µL (Iba1, GFAP) for overnight
at 4◦C. Next day secondary antibodies 1:400 µL (Alexa
Flour secondary antibodies, ThermoFisher, Waltham,
MA, United States) were applied at room temperature

for 1 h. The sections were washed with PBS for 5 min
three times. After washing, sections were transferred
to slides, and glass coverslips were mounted using the
mounting medium. The images were taken under inverted
fluorescence microscope IX73 Olympus. ImageJ software was
used to quantify the relatively integrated density of GFAP
and Iba-1.

Western Blotting
To extract the protein hippocampal tissue was lysed with
RIPA buffer and homogenized on ice. Supernatants were
collected after centrifugation (10,000 rpm for 10 min). The
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FIGURE 2 | Melatonin ameliorated depressive-like behavior induced by LPS. (A) Locomotor activity analysis by open field test, (B) Sucrose preference test (SPT),
(C,D) immobility analysis by tail suspension and FST. (n = 6 per group). Data are expressed as mean ± SEM, and results were analyzed using one-way ANOVA
followed by post-hoc analysis. p < 0.05 was considered statistically significant. *p < 0.05, **p < 0.01, ***p < 0.001.

immunoblotting was also performed according to the developed
protocols. Briefly, denatured samples (boiled at 100◦C for
5 min) were separated on SDS-PAGE and then transferred to
the nitrocellulose membrane. The membrane was blocked in
with non-fat milk in TBST (Tris–buffered saline, 0.1% Tween
20), then incubated in primary antibody (1:1000 dilution used
for Nrf2, p-NFkB, NFkB, p-GSK-3b, GSK-3b, Ho-1, GAPDH,
Tubulin, 1:2000 dilution was used for p-Akt, and Akt) overnight
at 4◦C. The primary antibodies were diluted according to
the company provided protocol. The next day membrane was
treated with a secondary antibody (1:1000) for 1 hr at 4◦C.

For detection, the ECL Super signal chemiluminescence kit
was used according to the manufacturer’s protocol. Blots were
developed using Chemidoc mp Bio-red, Hercules, CA, United
States. The densitometry analysis of the bands was performed
using image lab software.

List of Antibodies Used
Anti-Nrf2 (cell signaling, Lot: 12721), Anti-p-NFkB (Cell
signaling, Lot: 3033), Anti-NF-κB (Cell signaling, Lot: 8242),
Anti-p-GSK3b (Santa Cruz, Lot: sc-11757), Anti-GSK3B (Santa
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FIGURE 3 | Melatonin attenuated oxidative stress. (A,B) Column graphs representing the quantified ROS levels in serum and TBARs level in the hippocampal
tissues of experimental mice. Data are expressed as mean ś SEM, and results were analyzed using one-way ANOVA followed by post-hoc analysis. p < 0.05 was
considered statistically significant. *p < 0.05, **p < 0.01.

Cruz Lot: sc-9166), Anti-p-Akt (Cell signaling, Lot: 4060), Anti-
Akt (Cell signaling, Lot: 4691), Anti-HO-1 (Cell signaling,
Lot: 70081), Anti-Sirt1 (Cell signaling, Lot: 8469), Anti-
GAPDH (Cell signaling, Lot:5174), and Anti-Tubulin (Santa
Cruz, Lot: sc-8035).

Statistical Analysis
Western blot bands and morphological data were analyzed using
ImageJ software (Image J 1.30) and analyzed by SPSS Statistics
21 (IBM, United States) and GraphPad Prism 5 software. Data
were presented as mean ± SEM. One way/two way ANOVA
followed by post hoc Tukey/Bonferroni Multiple Comparison
tests were performed to compare different groups, using the
graph-pad prism-5 software. P < 0.05 was regarded as significant.
(∗): p < 0.05, (∗∗): p < 0.01), and (∗∗∗): p < 0.001.

RESULTS

Melatonin Reduced LPS Induced
Depressive-Like Behavior
Previous studies have reported that LPS can induce depressive-
like behaviors (O’Connor et al., 2009; Arioz et al., 2019). Herein,

LPS induced depressive-like behaviors were measured at 24 h
post LPS (last) injection by assessing changes in the body weight
(Figure 1B), locomotor activity (Figure 2A), and immobility
duration. LPS-treated mice showed sucrose preference less than
65% for a 1% sucrose solution (Figure 2B) and increased
immobility duration (Figures 2C,D), however, this effect was
blocked by pre-melatonin treatment. Moreover, it was interesting
in the report that luzindole (melatonin receptor inhibitor)
treatment significantly abolished melatonin protective effects,
suggesting that endogenous melatonin can block the onset of
LPS induced depressive-like behaviors. Fluoxetine was used as a
positive control as reported previously (Todorovic and Filipovic,
2017; Micheli et al., 2018).

Melatonin Modulated LPS-Induced
Oxidative Stress and Altered AKT/GSK3β

Signaling
An array of studies from experimental (in vitro and in vivo),
as well as human studies, support the role of oxidative
stress in the progression of diseases including neurological
disorders (Kovacic and Somanathan, 2012; Hsieh and Yang,
2013). Moreover, altered redox-sensitive signaling including
Akt/GSK3b accelerates free radical generation, followed by
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FIGURE 4 | Melatonin decreased Akt and GSK3β phosphorylation induced by LPS. (A) Relative Phospho-Akt expression normalized by total Akt. (B) Represent Akt
Phosphorylation in the hippocampus area of experimental animals normalized by total Akt. (C,D) Column graphs representing relative p-GSK3β expression in the
hippocampus of animal models treated with LPS/drugs normalized by total GSK. Data are expressed as mean ± SEM, and results were analyzed using one-way
ANOVA followed by post-hoc analysis. p < 0.05 was considered statistically significant. *p < 0.05, **p < 0.01.

cytokines production, which can lead to neuroinflammation
(Weichhart and Säemann, 2008; Kim et al., 2009; Manning
and Toker, 2017). Herein, our results indicated elevated serum
ROS (Figure 3A), hippocampus TBARs (Figure 3B), and
Akt/GSK3b phosphorylation (Figures 4A,B) in the LPS-treated
mice, which were significantly reversed by melatonin treatment.
However, after luzindole treatment, the effects of melatonin
were abolished (Figures 4C,D), suggesting the anti-oxidative
capacity of melatonin.

Melatonin Reduced Neuro-Inflammation
Elicited by LPS
LPS is a well-known inflammatory agent and it activates
astrocytes and microglia followed by the pro-inflammatory
cytokine-like TNF-α and IL-6, productions (Rushworth et al.,
2005; Velasquez and Rappaport, 2016; Song et al., 2018). Both
serum and tissue ELISA results indicated that LPS-treatment

significantly accelerated pro-inflammatory cytokines including
IL- 1β (Figures 5A,C), IL-6 (Figures 5E,G), and TNF-α
(Figures 5I,K) concentration while melatonin treatment reversed
these changes.

Moreover, numerous stimuli including cytokines,
chemokines, LPS, and oxidative stress induce NF-κB activation,
which subsequently plays a key role in the neuroinflammation
by accelerating cytokines productions (Mémet, 2006; Kawai and
Akira, 2007). Herein, our results showed markedly increased
NF-κB phosphorylation (Figure 6A) in the brain of LPS-
treated mice, which was normalized after melatonin treatment.
Furthermore, melatonin treatment attenuated LPS-mediated glial
cells activation markers including GFAP and Iba-1 expression
(Figures 7A,B). However, after the melatonin receptor blocking
by luzindole melatonin protective effect against LPS induced
neuroinflammation was reduced (Figures 5B,D,F,H,J,L, 6B, 7),
suggesting the key protective potential of melatonin against LPS
induced neuroinflammation.
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FIGURE 5 | Melatonin attenuated LPS-induced Cytokines elevation. (A,B) IL-1β level in the hippocampus, (C,D) Serum IL-1β level, (E,F) IL-6 level in the
hippocampus, (G,H) Serum IL-6 level, (I,J) TNFα level in the hippocampus, and (K,L) Serum TNFα level. Data are expressed as mean ± SEM, and results were
analyzed using one-way ANOVA followed by post hoc analysis. p < 0.05 was considered statistically significant. *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 6 | Melatonin reduced LPS-induced NF-kB expression. (A,B) Represents immunoblots indicating the expression of p-NF-κB/NF-κB in the hippocampus of
experimental mice. All the values are expressed as mean ± SEM: ANOVA followed by post hoc analysis. *p < 0.05, **p < 0.01, ***p < 0.001.

Melatonin Regulates Nrf2/Sirt1/HO-1
Expression in the Hippocampus Area of
Experimental Animals
Nrf2 is a well-known master regulator of redox homeostasis and
cytoprotective protein involved in antioxidant reactions as well
as inflammation (Djordjevic et al., 2015; Luo et al., 2018) while
Sirt 1 has been currently implicated in depression (Abe et al.,
2011; Libert et al., 2011; Chung et al., 2013). In the present study,
our results demonstrated that LPS-treatment had no significant
effect on Nrf2 expression in the hippocampal area of the brain.
However, increased Nrf2 expression was detected in the brain of
the melatonin-treated mice (Figures 8A,B). Similarly, melatonin-
treatment enhanced Sirt1 expression in the brain of mice, which
was suppressed by LPS treatment (Figures 8A,C). Interestingly,
luzindole treatment abolished these effects of melatonin on Nrf2
as well as Sirt1 expression (Figures 8E–G).

Next, we measured HO-1 expression, a key anti-inflammatory
agent regulated by Nrf2 (Li et al., 2018). Elevated HO-
1 expression was detected in the melatonin-treated mice
hippocampus (Figures 8A,D). However, this effect of melatonin
was abolished after luzindole administration (Figures 8E,H),
suggesting melatonin receptor-dependent regulation of HO-
1 expression.

DISCUSSION

In the present study, we studied the neuroprotective effect
of melatonin, against LPS-induced neuroinflammation and
depressive-like behaviors. LPS treatment significantly induced

depressive-like behaviors, oxidative stress, proinflammatory
cytokines production, and NF-κB activation, followed by
enhanced Iba-1 and GFAP expression in the hippocampus.
However, the melatonin treatment attenuated depressive-
like behaviors, oxidative stress, and neuroinflammation.
Interestingly, luzindole treatment significantly abolished the
effect of melatonin on depressive-like behaviors, oxidative stress
as well as neuroinflammation. Moreover, melatonin mediated
LPS effects on Sirt1/Nrf2/HO-1 signaling, which were abolished
by luzindole treatment.

Lipopolysaccharide as cytokine inducer evoke peripheral
and central immune activation in animal leading to
neuroinflammation, accompanied by depressive-like behaviors
(Sekio and Seki, 2015; Micheli et al., 2018; Zhao X. et al., 2019).
In agreement with the previous findings (Raghavendra et al.,
2000; Yu et al., 2017; Yuan et al., 2019), our results demonstrated
depressive-like behaviors upon LPS-treatment, which was
reversed by melatonin treatment. Besides, LPS dysregulates
PI3K/Akt/GSk3b signalings, which plays a crucial role in survival,
proliferation, and invasion by generating the second messengers
(Guijarro-Munoz et al., 2014). Moreover, the PI3K-Akt/GSK3b
pathway further regulates the induction and expression of
inflammatory genes expression that contributes to the onset
of depression. In our present study, decreased Akt/GSK3β

phosphorylation was detected at 24 h post-LPS-treatment, which
was significantly elevated by melatonin.

Growing evidence suggests that PI3K-Akt pathways regulate
NF-κB expression and its downstream regulator (Duman and
Voleti, 2012; Hussain et al., 2012; Kitagishi et al., 2012; Manning
and Toker, 2017). NF-κB plays an important role in the regulation
of immunity and inflammation (O’Neill and Kaltschmidt, 1997;
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FIGURE 7 | Melatonin inhibited microglia and astrocyte activation by LPS. (A) Iba-1 positive microglia (green) and (B) GFAP-positive astrocytes (red). Column graphs
representing the immunoreactive intensity of the microglia as well as astrocytes. p < 0.05 was considered statistically significant. *p < 0.05, **p < 0.01.

Mattson and Camandola, 2001; Mémet, 2006; Seldon et al.,
2007; Kassan et al., 2013). Upon activation via upstream
regulatory elements such as Toll-like receptor-4, NF-κB
translocate to the nucleus as a transcription factor and regulates
numerous inflammatory regulators including TNF-α expression.
Furthermore, increased TNFα, IL-6, and IL-1β in the LPS treated
mice suggest immune imbalance which was determined via
pro and anti-inflammatory cytokines measurement. Besides
the neuroinflammatory pathways, free radicals such as ROS
play a key role in the neuroinflammation by regulating pro
as well as anti-inflammatory signaling (Munhoz et al., 2008).
Dysregulated redox-sensitive signalings contribute a significant
role in an immune imbalance accompanied by depression (Hsieh
and Yang, 2013; Weyand et al., 2018). In the current study, our
results showed that LPS significantly accelerated free radical
generation, which was attenuated by melatonin treatment.
Moreover, excessive free radicals such as ROS can induce NF-κB
activation, followed by multiple inflammatory gene expression
(Sarada et al., 2008; Hsieh and Yang, 2013; Lugrin et al., 2014),
supporting the hypothesis that neuroinflammation leads to
depression. Consistent with the previous reports (Salminen

et al., 2008; Luo and Zhang, 2016; Shah et al., 2017), our
findings showed that a significant Sirt1 gene suppression in
the LPS-treated mice brain, which was improved by melatonin
treatment. However, melatonin effects were abolished by
luzindole treatment. Previously, Sirt1 dependent Nrf2 expression
has been reported, and after inhibition of Sirt1 via inhibitor,
enhanced pro-inflammatory cytokines and as well as p-NF-κB
expression were detected upon LPS administration, suggesting
a sirt1 role in LPS induced neuroinflammation (Mendez-David
et al., 2015; Santofimia-Castaño et al., 2015; Song et al., 2017;
Shah et al., 2017; Ma et al., 2018; Wang et al., 2019; Merlo et al.,
2020; Yi et al., 2020; Zhi W. et al., 2020).

NF-κB regulates Nrf2 transcription and activity, whose
downregulation/abrogation leads to increase NF-κB activity
and enhanced cytokine production (Kratsovnik et al., 2005;
Kawai and Akira, 2007; Lugrin et al., 2014; Djordjevic et al.,
2015). Herein, melatonin treatment significantly increased
Nrf2 and anti-inflammatory protein HO-1 expression which
was down-regulated in the presence of melatonin receptor
(MT1/MT2) inhibitor, suggesting the melatonin in a receptor-
dependent manner regulates NF-κB/Nrf2/HO-1 expression
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FIGURE 8 | Melatonin elevated Nrf2, Sirt1, and HO-1 expression receptors dependently in the hippocampus area. (A,E) Representative blots show Nrf2, Sirt1, and
HO-1 expression, (B,F) representing Nrf2 relative expression, and (C,G) shows Sirt1 expression in the hippocampus of the animal model. (D,H) Quantitative analysis
of HO-1. Quantified results were normalized to GAPDH. All the values are expressed as mean ± SEM: ANOVA followed by post hoc analysis. *p < 0.05, **p < 0.01,
***p < 0.001.
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(Rushworth et al., 2005; Rehman et al., 2019; García et al.,
2020). HO-1 contributes a significant role in modulating
the inflammatory response. Many anti-inflammatory mediators
have been demonstrated to enhance HO-1 expression, which
subsequently inhibits inflammation (Lee and Chau, 2002; Lee
et al., 2003). Recently it has been demonstrated that melatonin
acts through the Nrf2 pathway and prevents the decline
of antioxidant enzyme activities during brain pathological
conditions (Moezi et al., 2011; Mendez-David et al., 2015;
Herrera-Arozamena et al., 2020; Zhi W. et al., 2020), supporting
our results that endogenous melatonin counterbalances the
oxidative stress by boosting the body antioxidants system via
its receptors. Our results are also in agreement with growing
evidence that melatonin enhances HO-1 expression via NF-κB,
p38 MAPK, and Nrf2 cascade signaling mechanism (Santofimia-
Castaño et al., 2015; Yu et al., 2017; Shah et al., 2017; Ma et al.,
2018; Zhao et al., 2018; Rehman et al., 2019; Xi et al., 2019; García
et al., 2020; Hein et al., 2020; Zhou et al., 2020; Zhi W. et al., 2020).

CONCLUSION

In conclusion, our study showed that LPS treatment
stimulates pro-inflammatory cytokines production and induce
oxidative stress imbalance followed by NF-κB activation,
which leads to neuroinflammation along with depressive-like
behaviors. Also, LPS-treatment significantly reduced Akt/GSK3b
phosphorylation as well as Sirt1 expression. Melatonin acts as a
neuroprotective agent abolished LPS effects on oxidative stress,
NF-κB activation, redox-sensitive signaling, and depressive-
like behaviors in a receptor-dependent manner. Further,
these findings also proposed an indispensable relation of the
antioxidative and anti-inflammatory activities of melatonin.
Finally, the molecular changes underlying melatonin’s effects

may provide potential therapeutic candidates for the treatment
of neuroinflammation associated depression.
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